Balance and Motion Unit Design – Grade 1

Balance & Motion shows we live in a dynamic world where everything is in motion, or so it seems. But not everything is moving the same way. Some things move from one place to another. Other things go around and around in a rotational motion. Still other things are stationary, stable for a time, balanced on a thin line between stop and go. These are the global phenomena that students experience in this module

Grade 1

RI Statements of Enduring Knowledge - (Established Goals):

PS 3 - The motion of an object is affected by forces.

Related Rhode Island GSE's (Understandings)	RI Assessment Targets Assessment Evidence ***High Emphasis Targets
 PS3 (K-2) –7 Students demonstrate an understanding of motion by 7a showing how pushing/pulling moves or does not move an object. 7b predicting the direction an object will or will not move if a force is applied to it. Students demonstrate an understanding of force by 7c showing that different objects fall to earth unless something is holding them up. 	*** PS3 (K-4)-INQ+SAE –7 Use data to predict how a change in force (greater/less) might affect the position, direction of ```motion, or speed of an object (e.g., ramps and balls). Investigation 2, Parts 1-3, pp. 8-25 Investigation 1, Parts 1-4, pp. 8-28 Investigation 3, Parts 1-3, pp. 6-25
 PS3 (K-2)–8 Students demonstrate an understanding of (magnetic) force by 8a observing and sorting objects that are and are not attracted to magnets. 	PS3 (K-4) INQ+ SAE –8 Use observations of magnets in relation to other objects to describe the properties of magnetism (i.e., attract or repel certain objects or has no effect) Science Stories pp. 18-21

 $_{\rm Page}19$

Words in **bold** are important for science vocabulary development, and should be used for word walls.

1.1-(3) T	Trick Crayfish	How many ways can a shape	Objects can be balanced in many ways
		balance?	Counterweights can help balance an object The way an object can be balanced can be changed by counterweighting
1.2-(2) T	Triangle and Arch	How can counterweights help us balance other shapes?	A stable position is one that is steady; the object is not falling over The place on which an object balances is called the balance point Counterweights should be placed low or below an object in relation to the balance point
1.3-(1) T	The Pencil Trick	How can a pencil be balanced on its point?	Counterweights should be placed low or below an object in relation to the balance point The position of an object can be described by relating its location to another object
1.4-(2) N	Mobiles	 How do the parts of a mobile stay in stable positions? 	A mobile is a system of balanced beams and objects
2.1-(2) T	Tops	How can spinning tops be changed?	Objects and systems that turn on a central axis exhibit rotational motion You need a force to start a top spinning The amount and position of mass affect how the object rotates
2.2-(2) Z	Zoomers	How can a spinning object be kept in motion?	There are different ways to initiate rotational motion The motion of an object can be changed by pushing or pulling Tops and zoomers both spin, but in different ways
2.3-(2) T	Twirlers	• How did the different shapes make the twirler move?	Variations in design can influence the rotational motion of spinning objects Air resistance can act as the force that initiates rotational motion
3.1-(2) F	Rolling Wheels	 How can a wheel and axle system be changed? 	 Wheels roll down a slope A slope is a surface that is higher on one end than another Axles support wheels Wheel-and-axle systems with wheels of different sizes roll toward the smaller wheel
3.2-(2) F	Rolling Cups	 Can we predict the behavior of the rolling cup? What happens if weight is added to a rolling cup system? 	Cups roll in the direction of the smaller end To roll straight, two cups can be taped together so the ends are the same size The amount and location of an added weight can change the way a system rolls
3.3-(1) F	Rolling Spheres	How can we make a runway that will keep a marble rolling?	Spheres are round in all directions and roll in all directions A runway must be high at the start and low at the finish for a sphere to roll the complete length of the runway. Spheres roll down a slope

Balance and Motion