DATE PRESEN	ITED:3/27/13	DATE DUE:	LEN	IGTH OF TIME: Several we	eeks, quarter, semester
ERVIEW OF UNIT:					
his unit we will gain an u nensional figures. We wi nections between two-d nensional figures. We wi nme of various solids whi eal-life situations.	ill investigate and make dimensional and three- Il explain and calculate	and hov figures? How do sphere?	you identify cross s v do you use rotatio you calculate the v	NTIAL QUESTIONS Sections of three-dime ons to generate three volume of a pyramid, to solve design proble	-dimensional cylinder, cone, o
ANDARDS: Commor				a (
Number and Quantity The Real Number System N-RN 	Algebra Seeing Structure in Expressions A-SSE	Functions Interpreting Function F-If	Modeling	Geometry	Statistics and Probability Interpreting Categorical and Quantitative Data S-ID
 Quantities N-Q The Complex Number System N- CN 	 Arithmetic with Polynomials and Rational Expressions A-APR Creating Equations A-CED 	 Building Functions F-BF Linear, Quadratic, and Exponential Models F-LE 		 Similarity, Right Triangles, and Trigonometry G- SRT Circles G-c 	S-ID ☐ Making Inference and Justifying Conclusions S-I4
Vector and Matrix Quantities N-VM	Reasoning with Equations and Inequalities A-REI	Trigonometric Functions F-TF		Expressing Geometric Properties with Equations G-GPE Geometric Measurement and Dimensions G-GMD Modeling with Geometry G-MG	
ANDARDS: Mathema	atical Practices grad	es K-12		•	
 Make sense of problems and persevere in solving them Reason abstractly and quantitatively 	 Construct viable arguments and critique the reasoning of others Model with mathematics ★ 	 Use appropriate tools strategically Attend to precision 	7. Look for and make use of structure	 Look for and express regularity in repeated reasoning 	
CUS MATHEMATICS	STANDARDS: ormulas and use them t	o solve problems.	Apply geomet	tric concepts in modeling s	ituations. G-
G-GMD. <mark>1,2,3</mark> Visualize the relation 	tion between two-dime	·	MG. <mark>1,2,3</mark>		
dimensional obje Applied Learning Si problem solving		on critical t	thinking	research re	flection/ evaluation
Expectations for St	tudent Learning (Hig	h School only):			
Deckl	om Solving, Commun	ication Body of Know	lodao Broficionav in t	he Arts, Responsibility	

ENDURING UNDERSTANDING:

At the end of this unit, students will be proficient in the following:

- Explain volume formulas and use them to solve problems.
- Visualize the relation between two-dimensional and three dimensional objects.
- Apply geometric concepts in modeling situations.

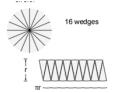
North Smithfield School District

PRIOR KNOWLEDGE:

- Algebra I
- Area of polygons
- Units 1 & 2

STUDENT OBJECTIVES, SKILLS and/or NEW KNOWLEDGE:

- Informal arguments can be used to explain the formulas for the circumference and area of a circle, volume of a cylinder, pyramid, and cone.
- Cavalieri's principle can be used to explain the formulas for the volume of a cylinder and other solid figures.
- What constitutes an informal argument?
- How is the formula for the circumference of a circle related to the formula for the area of a circle?
- What is Cavalieri's principle and how is it used in informal arguments?
- Volume formulas for cylinders, pyramids, cones and spheres can be used to solve real-world problems.
- What is a real-world situation in which you would need to calculate the volume of a cylinder? Pyramid? Cone? Sphere?
- Cross-sections of three-dimensional objects create two-dimensional shapes.
- Three-dimensional objects can be created by rotating two-dimensional objects.
- What two-dimensional shapes are created by taking cross-sections of a given three-dimensional object?
- What three-dimensional objects can be sliced to create a trapezoid, and how?
- How do you create a circle or parabola by slicing a three-dimensional figure?
- Give an example and explain how a three-dimensional object is created from a two-dimensional object.
- Geometric shapes and their properties can be used to model real-world objects.
- How can you model objects in your classroom as geometric shapes?
- Density is the measure of a quantity per area or volume.
- How is density related to area and volume?
- Design and structure problems can be solved with geometry.
- Give an example of a real-world problem that can be solved using geometry.


SUGGESTED PROBLEMS:

Teaching Example:

• Cavalieri's principle is if two solids have the same height and the same cross-sectional area at every level, then they have the same volume

Examples:

• Use the diagram below to give an informal argument for the formula for finding the area of a circle.

• Prove that the right cylinder and the oblique cylinder have the same volume.

Teaching Example:

• Missing measures can include but are not limited to slant height, altitude, height, diagonal of a prism, edge length, and radius.

Example:

Determine the volume of the figure below.

Teaching Examples

- Identify the shape of the vertical, horizontal, and other cross sections of a cylinder.
- Identify the shape of the vertical, horizontal, and other cross sections of a rectangular prism.

Teaching Examples

Example:

• A cylinder can model a tree trunk or a human torso. How can you model objects in your classroom as geometric shapes?

Teaching Examples

How is a typographic grid used in design?

Example:

Tucson has about one million people within approximately 195 square miles. What is Tucson's population density?

Teaching Examples

• Students may use simulation software and modeling software to explore which model best describes a set of data or situation. Examples:

- Design an object or structure to satisfy physical constraints or minimize cost.
- Work with typographic grid systems based on ratios

This paper clip is just over 4 cm long.

How many paper clips like this may be made from a straight piece of wire 10 meters long?

From: illustrativemathematics.org

Assessment Problems:

- <u>http://www.illustrativemathematics.org/illustrations/1141</u>
- http://www.illustrativemathematics.org/illustrations/1127
- <u>http://www.illustrativemathematics.org/illustrations/1128</u>
- <u>http://www.illustrativemathematics.org/illustrations/1125</u>
- http://www.illustrativemathematics.org/illustrations/720
- http://schools.nyc.gov/NR/rdonlyres/C03D80B2-9213-43A9-AAA3-BB0032C62F4F/139657/NYCDOE_G10_ADayattheBeach_FINAL1.pdf

ACTIVITIES, PRODUCTS, PERFORMANCE, and ASSESSMENTS: see curriculum introduction

Graphic organizers

- 1. Application to real world problems
- 2. Creating charts/collecting data
- 3. Collaboration
 - interpersonal
- Conferencing
 Exhibits
- J. EXHIBITS
- 7. Graphing
- 8. Interviews
 9. Journals

6.

- 10. KWL charts
- 11. Mathematical Practices
- 12. Modeling ★
- 13. Oral presentations
- Problem/Performance based/common tasks
 Real-life applications
- involving graphing

modeling)

- Represent numbers
 Rubrics/checklists (mathematical practice,
- 18. Technology
- 19. Summarizing and notetaking
- 20. Tests and quizzes
- ers 21. Writing genres
 - Arguments/ opinion Informative

- Tests and guizzes
- Warm ups
- Exit Slips
- Polls

HIGHER ORDER THINKING SKILLS: Web's Depth of Knowledge 2 – 4 or Bloom's Taxonomy

Web's Depth of Knowledge

- skill/conceptual understanding
- strategic reasoning
- extended reasoning

Bloom's Taxonomy

- apply
- analyze
 - synthesize/create
 - evaluate

ADDITIONAL RESOURCES: see curriculum for specifics

<u>Textbook</u>

- McDougal Littell Geometry, Applying, Reasoning and Measuring 1.7, 12.1, 12.4-12.6(no surface area)
- Houghton Mifflin Harcourt, On Core Mathematics Geometry Unit 10 (10.1 10.6)

Technology

- Computers
- LCD projectors
- Interactive boards

Websites

- <u>http://curriculum.northsmithfieldschools.com</u>
- http://www.achieve.org/http://my.hrw.com
- <u>http://www.illustrativemathematics.org/standards/practice</u>
- http://www.ode.state.oh.us/GD/Templates/Pages/ODE/ODEDefaultPage.aspx?page=1
- http://www.parcconline.org/sites/parcc/files/PARCC%20Math%20S
- <u>http://www.tusd1.org/contents/distinfo/curriculum/index.asp</u>
- <u>www.commoncore.org/maps</u>
- <u>www.corestandards.org</u>
- <u>www.khanacademy.com</u>
- <u>www.ride.ri.gov</u>
- http://physics.weber.edu/carroll/archimedes/method1.htm
- <u>http://www.comap.com/</u>

Materials

- Computer dynamic geometry software (Geometer's Sketchpad[®], Cabri[®], or Geogebra[®]).
- Concrete models of circles cut into sectors and cylinders, pyramids, cones and spheres cut into slices.
- Drinking Straws
- Dynamic geometry software (Geometer's Sketchpad[®], Cabri[®], or Geogebra[®])
- Geoblocks or comparable models of solid shapes
- Geometry & its Applications (GeoMAP). An exciting National Science Foundation project to introduce new discoveries and real-world applications of geometry to high school students. Produced by COMAP
- Graph paper
- Instructional Resources/Tools
- Mathematics: Modeling our World, Course 1 and Course 2, by the Consortium for Mathematics and its Applications (COMAP), http://www.comap.com/
- Origami paper
- Protractor
- Pythagorean Puzzle http://www.nsa.gov/academia/ files/collected learning/high school/geometry/pythagorean puz Compass
- Reflection tool (e.g. Mira[®]).
- Rope or string
- Ruler
- Scientific and/or Graphing calculators and other handheld technology such as TI-Nspire™.

- Sourcebook of Applications of School Mathematics, compiled by a Joint Committee of the Mathematical Association of America and the National Council of Teachers of Mathematics (1980).
- String
- Tracing paper (patty paper)
- Transparencies
- Video: The Story of Pi from Project MATHEMATICS!

VOCABULARY

- Area
- Cavaliere's Principle
- Circumference
- Cone
- Cross section
- Cylinder
- Density
- Informal argument

- Physical constraints
- Pyramid
- Rotations
- Spheres
- Three-dimensional
- Two-dimensional
- Typographic grid system
- Volume

LESSON PLAN for UNIT

LESSONS

- Lesson # 1 Summary:
- Lesson #2 Summary:
- Lesson #3 Summary:

OBJECTIVES for LESSON # _____

- Materials/Resources:
- Procedures:
 - Lead -in
 - Step by step
 - Closure
- Instructional strategies: see curriculum introduction
- Assessments: see curriculum introduction
 o Formative
 - o Summative